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DL-BET - A deep learning based tool for automatic brain extraction from structural magnetic resonance
images in mice.
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Synopsis
Brain extraction plays an integral role in image processing pipelines in both human and small animal preclinical MRI studies. Due to lack of state-of-the-art tools for
automated brain extraction in rodent research, this step is often performed semi-supervised with manual correction, making it prone to inconsistent results. Here, we
perform a multi-model brain extraction study and present a semi-automated preprocessing work�ow and deep neural network with a 3D Residual Attention U-Net
architecture as the optimal network for automated skull-stripping in neuroimaging analysis pipelines, achieving a DICE score of 0.987 and accuracy of 99.7%.

Introduction
Brain extraction is a fundamental step in preclinical MRI studies, representing an integral part of processing pipelines in both human and small animal MRI. Also known as
skull-stripping, this processing step refers to the identi�cation of the brain within the MRI volume and subsequent removal of the skull and surrounding tissues from an
image, leaving only the region of brain tissue for further neuroimaging analysis. While much literature on brain extraction aims to accomplish this task in humans, brain
extraction still poses a great challenge in rodents, as most human brain extraction algorithms are not directly suitable for rodents due to notable physiological and size
di�erences between human and small animal brains. Due to lack of state-of-the-art tools for automated brain extraction in rodent research, this step is often performed
manually in a way that is not only time-consuming but also prone to inconsistent results due to high variability between annotators. Brain extraction has also been
performed through edge-based and atlas-based methods. Deep learning, a subset of machine learning, has demonstrated great promise for fast and robust brain
extraction, as previously shown in humans and mice . Here, we o�er a semi-automated preprocessing work�ow and deep learning-based brain extraction tool
implementing a Residual Attention U-Net architecture that has previously been used for tumor segmentation , semantic segmentation of surgical instruments , and cell
segmentation , which we applied and optimized for the purpose of brain extraction. In this work, we demonstrate that the Residual Attention U-Net with 3D inputs
performs brain extraction in mice MRI scans with high visual and quantitative accuracy. Our work will be released as a publically available deep learning brain extraction
toolkit (DL-BET).

Methods
This study involved 200 healthy adult wild type C576J/BL male mice scanned at 3-48 months. MRI acquisitions were performed using the 2D T2-weighted TurboRARE
sequence at 9.4T on a Bruker BioSpec 94/30 scanner (TR/TE = 3500/45, RARE factor = 8, 76 µm in-plane resolution, 450 µm slice thickness). Images were preprocessed with
isotropic upsampling to 60 micron resolution and N4 bias �eld correction. Intensity normalization to the dynamic range of [0,1] was done and a train-validation-test ratio
at 8:1:1 was applied to model training. Ground truth brain masks were generated using PCNN  to and multi-rater manual correction. Our study employs 2D and 3D
Residual Attention U-Net (RAU-Net) architectures. Model inputs are MRI scans of uniform dimensions, while outputs are predicted brain masks. The RAU-Net is an
extension of the U-Net,  with the addition of residual blocks  and the attention gates . As an example of a convolutional neural network (CNN), the U-Net extracts imaging
features by utilizing local convolutions along the entire image or volume. The U-Net consists of several encoding layers across which the image dimension shrinks
whereas the feature dimension increases so that compact high-level abstractions are generated along the process, and the same number of decoding layers to decipher
these abstractions into image space information. The residual blocks are added to simplify entities to be approximated across each layer and therefore enable training of
deeper networks, while the attention gates learn to di�erentially enhance or suppress speci�c regions in the feature maps so that the downstream outcomes better suit
the desired task. DICE coe�cient, Jaccard index, accuracy, sensitivity, and speci�city were used to quantify performance of RAU-net models.

Results
Quantitative evaluation demonstrates high similarity between predictions by all models and corresponding ground truth masks (Figure 3). To validate the success of our
model and bene�t of implementing an architecture with attention for accurate skull-stripping, 2D and 3D RAU-Nets were compared to the SkullNet, a 2D CNN-based
architecture designed by De Feo et al, as a baseline and standard for successful network performance in this study [1]. Both our 2D and 3D models outperform the
SkullNet, with our 3D model being the most successful of the three models across all quantitative metrics, with a DICE score of 0.987 and accuracy of 99.7%,
demonstrating great similarity to the ground truth masks. Visually, the 3D RAU-Net prediction appears most similar to the ground truth mask and is notably much
smoother than the SkullNet prediction from the same input scan (Figure 4).

Discussion & Conclusion
Based on the results of our multi-model brain extraction study, we present a semi-automated preprocessing work�ow and deep neural network with a 3D RAU-Net
architecture as the optimal alternative to manual brain extraction and the most favorable network for automated skull-stripping in neuroimaging analysis pipelines. We
�rst show that our 2D model outperforms the previously published 2D SkullNet architecture, improving the accuracy and producing a mask with a smoother surface.
Next, we show that our 3D model supersedes both 2D architectures, likely due to the bias incurred by analyzing a naturally three-dimensional object slice by slice when
using a 2D model for skull-stripping. In the future, we aim to improve our model to have the capability of predicting masks with small training sets by introducing on-the-
�y augmentation, which would allow us to adapt our model to facilitate brain extraction of other species with limited dataset availability.
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Figures

Preprocessing and Application Pipeline. Raw data is �rst converted to the NIFTI �le type, followed by bias �eld correction, manual orientation correction, and isotropic
upsampling. The preprocessing scan can then be fed into the deep learning-based brain extraction model to obtain an accurate brain mask.

3D Residual Attention U-Net Architecture. The input of this network is a 3D MRI scan and the output is the corresponding 3D brain mask. 3D convolution and max-pooling
are used in addition to residual blocks and attention gates. The function of each layer is de�ned in the legend.

Quantitative performance comparison between three models based on �ve metrics: DICE coe�cient, Jaccard index, accuracy, sensitivity, and speci�city. Bars represent
the mean of 20 test samples +/- standard deviation. All metrics are out of 1. Demonstrating the best performance across all metrics is the 3D Residual Attention U-Net,
followed by the 2D Residual Attention U-Net.

3D renderings and axial, coronal, and sagittal cross-section views of test predictions generated with the 2D RAU-Net (B), 3D RAU-Net (C), and SkullNet (D) compared to
ground truth masks (A). A test subject was chosen that represented the best results of all three models, with masks having DICE coe�cients of 0.991, 0.992, and 0.985
respectively.
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