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Synopsis
Cramér-Rao Lower Bounds (CRLBs) have become the routine method to approximate standard deviations for magnetic resonance spectroscopy. CRLBs are theoretically a
lower bound on the standard deviation. Realistic synthetic 3 Tesla spectra were used to investigate the relationship between estimated CRLBs, true CRLBs and standard
deviations. It was demonstrated that although the CRLBs are theoretically truly a lower bound on the standard deviation this approximation is valid only as long as the
model properly characterizes the data. In the case when the basis set deviates from the measured data it was shown that the CRLBs deviate substantially from standard
deviations.

Introduction
As magnetic resonance spectroscopy (MRS) is a time-limited modality it is typically not feasible to perform multiple repetitions of the same experiment to calculate the
standard errors. As such the �eld has adopted the Cramér-Rao Lower Bound  (CRLB) to circumvent this problem. Here a simulation study is presented which investigates
the relationship between CRLBs and standard deviations (SDs) for two related but distinct cases: 1) the signal is well characterized by the model (i.e., the basis set of
metabolites accurately re�ects the experimental reality and the macromolecule signal has been measured a priori and is included in the linear combination modeling �t);
and 2) the signal is approximately characterized by the model (i.e., the macromolecules have been measured a priori, however its exact shape has been modulated by T
e�ects, as the double inversion preparation typically used to measure MM highly sensitizes these resonances to T  variations ).

Methods
Synthesis of Spectra 
Spectra were synthesized similar to what has previously been performed . Spectra were Gaussian broadened  with a linewidth of 3, 8 or 20 Hz  (NAA full width at half
maximum of 4.6 Hz, 6.2 Hz and 8.9 Hz), which re�ected good, adequate and poor quality shims, respectively, at 3T . Five di�erent noise factors (NF) were chosen to span
the range of typically encountered signal-to-noise ratios (SNR). These noise scaling factors were 1, 2, 4, 8 and 16, where NF = 1 corresponds to an SNR of 773, 640, 523, for
Gb = 3, 8 and 20 Hz , respectively. The macromolecule signal was approximated as the sum of 10 individual Lorentzian resonances with measured concentration and T
values . The case when the macromolecule signal was approximately known (corresponding to the case where the macromolecules were measured but their amplitudes
were modulated by T  e�ects) was also investigated here. To approximate this e�ect the amplitude of the 10 macromolecule resonances varied by ±20%. 

Calculation of SDs and CRLBs  
5000 Monte Carlo simulations di�ering in additive white Gaussian noise for each noise factor and shim quality were performed. At each trial the parameters (amplitude,

frequency shift, Lorentzian linewidth, Gaussian linewidth and phase) were estimated via the interior trust region approach  in INSPECTOR . The estimated CRLB, ,

and true CRLB were calculated by inverting the Fisher information matrix .  was calculated using the extracted �t parameters and noise power from the Monte
Carlo simulations, while the true CRLB used the a priori parameter values and noise power.

Results and Discussion
The simulated spectra appear visually very similar to those obtained experimentally with the same sequence  (Figure 1). Excellent �ts were obtained in the case where the
perfect model and small but noticeable discrepancies were observed for the imperfect model (Figure 2). The number of chosen was su�cient to provide convergence for
both SD and CRLB (Figure 3). 

In the case of a perfect model the CRLB/SD for the amplitude parameters are given in Figure 4. The true CRLB and estimated CRLB, , for all major metabolites (i.e.,
NAA, Cr, Glu, Gln, Cho, GPC, mI) are within 20% of the SD of amplitude when the SNR is above the breakdown threshold. Consistent with previous work  when the SNR is
below the breakdown threshold the CRLB can vary substantially from the SD. 
In the case when the basis macromolecule signal deviates from the macromolecule signal in the spectrum the CRLB/SD for the amplitude parameters is given in Figure 5.
The CRLB becomes a much poorer approximation for SD across virtually all metabolites. Major metabolites such as NAA and creatine can have CRLBs approximately 50%
of the SD even in the cases of a high quality shim and high SNR. The appropriate parameterization of the macromolecule signals is a topic of ongoing research , and
the results here demonstrate that if the macromolecules were able to be measured accurately then CRLBs would be a reasonable approximate SDs. In other words, the
CRLB is adequate at estimating the aleatoric uncertainty, while it does not incorporate the epistemic uncertainty. 
In the case of an accurate model the result that CRLB/SD  indicates that the estimators are nearly e�cient . Thus the only substantial improvement novel methods
such as denoising , deep learning  and non-Fourier methods  will be able to yield is in relation to being able to extract values in the presence of an imperfect
knowledge or in dealing with data with artefacts. These would be important improvements, however it is critical that this fundamental bound is acknowledged, which
e�ectively eliminates the search for the holy grail of MRS algorithms: obtaining orders of magnitude more information from the same signal.

Conclusions
CRLBs and SDs were calculated via Monte Carlo simulations for 18 di�erent metabolites and a macromolecule signal. When the model accurately represents the spectrum
there is relatively little deviation between the CRLBs and SDs, provided the SNR is above the breakdown threshold, indicating that these parameter estimators are almost
e�cient. This �nding of near-e�ciency has important implications for the development of novel quanti�cation methods such as deep learning . In the case where the
model does not accurately represent the data there is substantial deviations of both the estimated and true CRLB from SDs.
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Figures

Figure 1: The synthesized spectra for the three di�erent shim conditions: good, A, adequate, B, and poor, C. These spectra appear very similar to those obtained with the
same pulse sequence experimentally (see Landheer et al. ).

Figure 2: Plot of synthesized spectra (red), �ts (black) and residual (grey) for the highest SNR spectra, A/C, and lowest SNR spectrum, B/D for the adequate shim case.
Spectra shown in A/B depict the model perfectly representing the data, whereas spectra in C/D depicts the imperfect model. The deviation due to the imperfect model is
most apparent in the region with little overlapping metabolites (arrow), whereas in the region with heavy overlap (i.e., 2.0 to 4.2 ppm) the metabolites ‘compensate’, i.e.
variations in macromolecules result in changes in metabolite concentrations.
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Figure 3: The three estimated values (SD, blue, estimated CRLB, black and true CRLB, red) vs the number of trials of the MC simulation NMC for the estimated amplitude
for a representative case (NF = 1, Gb = 8 Hz , model perfectly characterizes data). Similar results were obtained for the other four estimated parameters and other four
noise factors.

Figure 4: The true CRLBs (red) and estimated CRLBs (black) divided by the standard deviations calculated through MC simulations for the estimated amplitudes for the 18
metabolites and the macromolecules signal across 5 di�erent noise factors (NF = 1 to 16) in the case where the model properly characterizes the data. The circles, squares
and stars represent Gb = 3 Hz , 8 Hz , and 20 Hz , respectively. The breakdown SNR is reached when the true CRLB divided by standard deviation (red) is greater than 1.
Similar results were obtained for the other four estimated parameters.

Figure 5: The true CRLBs (red) and estimated CRLBs (black) divided by the standard deviations calculated through MC simulations for the estimated amplitudes for the 18
metabolites and the macromolecules signal across 5 di�erent noise factors (NF 1 to 16) in the case where the model does not properly characterize the data. The circles,
squares and stars represent Gb = 3 Hz , 8 Hz , and 20 Hz , respectively. The breakdown SNR is reached when the true CRLB/SD (red) is consistently greater than 1. Similar
results were obtained for the other four estimated parameters.
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