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Synopsis
fMRI acquisitions bene�t from spiral trajectories; however, their use is commonly restricted due to o�-resonance blurring artifacts. This work presents a deep-learning-
based model for spiral deblurring in inhomogeneous �elds. Training of the model utilized blurred simulated images from interleaved EPI data with various degrees of o�-
resonance. We investigated the e�ect of using the �eld map during training and compared correction performance with the MFI technique. Quantitative validation results
demonstrated that the proposed method outperforms MFI for all inhomogeneity scenarios with SSIM>0.97, pSNR>35 dB, and HFEN<0.17. Filter visualization suggests blur
learning and mitigation as expected.

Introduction
T *-weighted fMRI requires short acquisition times and e�cient k-space sampling to accurately detect BOLD signal  changes. Rapid sequences such as spirals or EPI
acquire k-space using only a few long read-out shots. This feature makes them more susceptible to �eld inhomogeneities, resulting in artifacts that can be especially
severe in brain regions where di�erent tissue types interface . Spiral trajectories are less motion-sensitive, provide shorter readout times, and improve signal recovery in
some brain areas compared to EPI . Despite their bene�ts, spiral use in fMRI is limited mainly due to o�-resonance induced image blurring.  
Multiple o�-resonance correction methods exist, e.g., any version of Conjugate Phase Reconstruction (CPR)  or iterative reconstruction techniques . However, they can
su�er from inaccurate corrections at regions of severe �eld inhomogeneity and long, demanding, and complex computation . Thus, these methods become impractical
when correcting fMRI data that entails hundreds of whole-brain coverage time series. This study aims to demonstrate the feasibility of a deep-learning network for spiral
deblurring at di�erent inhomogeneity ranges for its application on spiral-based fMRI.

Methods
We utilized resting-state 3T EPI images and �eld maps from 10 subjects  (OpenNeuro, ds000224) with a resolution of 64x64x34. We forward-modeled the EPI images using
the �eld map and a 3-shot spiral trajectory of 9.6 ms readout duration to simulate blurring (Figure 1). Data augmentation was analogous to Lim et al.  and included scaling
the �eld map by 𝛼 and adding an o�set 𝛽 to reproduce diverse inhomogeneity ranges. 
The network architecture (TensorFlow-Keras ) was a 2D U-net  consisting of 23 ReLU activated convolutional layers (4 for downsampling) and 4 deconvolutional
upsampling layers. The loss functions aimed to minimize structural (Structural Similarity Index loss) and voxel-wise di�erences (L1 loss, MSE loss) and to preserve edge
information (gradient loss).  
Pre-processing included normalizing between [0, 1] and resizing images to 128x128. The generated dataset consisted of �ve time-points selected randomly and corrupted
with a di�erent 𝛼-𝛽 combination. The training-validation-testing split was 90-5-5%. We trained two models for 150 epochs to investigate the �eld map’s e�ect, using only
the blurred slice as input and using both the blurred slice and the �eld map. The total number of training slices was 1624. 
Validation experiments compared the models’ deblurring performance with Multi-Frequency Interpolation (MFI)  using peak-SNR, SSIM, and High-Frequency Error Norm
(HFEN) . We also visualized �lter activations. As a testing experiment, we attempted to deblur spiral PRESTO-based brain images.

Results
Figure 2 shows how the blurring of a validation slice increases with 𝛼 and the absolute value of 𝛽 since they broaden the �eld map’s frequency range. The maximum and
minimum �eld map values obtained were 838 and -980.25 Hz. All correction techniques successfully deblurred all images. Quantitative results (Figure 3) demonstrated
that U-net correction outperforms MFI with SSIM greater than 0.97 and pSNR values larger than 35 dB for all images. Both U-net models display similar performance
metrics, with the model trained without �eld map showing slightly higher pSNR in four out of �ve cases. HFEN minimum values correspond to the U-net corrections. From
here on, the results shown come from the U-net trained without �eld map. 
Filter activations (Figure 4) of test slices revealed that the model picked up the blurring induced by the spiral sampling and o�-resonance and removed it from the image
while enhancing edge sharpness. Evaluation results (Figure 5) of the model on a PRESTO dataset demonstrated the model’s capability to emphasize the image’s edges, as
the output-input di�erence image conveys. However, it also magni�ed other artifact-related high-frequency information such as phase artifacts due to RF spoiling errors.

Discussion
The parameters 𝛼 and 𝛽 mimic inhomogeneous �elds and the e�ect of improper shimming . It is essential to train the model in a broad frequency range as the actual
acquisition inhomogeneity is unknown beforehand. Furthermore, spiral artifacts worsen as the o�-resonance range increases.  
SSIM results demonstrate high structural �delity; pSNR metrics indicate high-quality correction, and HFEN values convey that the model restores the image’s high spatial
frequency features after deblurring. Compared to MFI, U-net results show better quantitative metrics, and it is faster. Moreover, we demonstrated that a �eld map is not
required for DL deblurring to perform satisfactorily. This is a signi�cant advantage since �eld map acquisition increases scan duration and may lead to errors if the image
registration is not accurate. 
Filter visualization suggests that the encoding half of the model identi�es blurring, and the decoding half removes it while detecting edges and sharpening them. The
evaluation results demonstrated that the model ampli�es artifacts in the input image, conveying limited tolerance to other non-blurring artifacts. The PRESTO T * contrast
of the dataset is di�erent from the training contrast, which may also a�ect correction performance. 
Future work includes increasing the number of slices in the test/train dataset, comparing U-net results to calibrationless iterative reconstruction methods, evaluating in a
spiral non-PRESTO dataset, and investigating the e�ect of blurring and deblurring in downstream functional connectivity analysis.

Conclusion
The proposed method for DL-based deblurring of spiral fMRI images in �eld ranges of up to ±1000 Hz outperformed MFI on simulated data visually and quantitatively.
Filter visualization suggested successful deblurring and high-frequency feature enhancement.
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Figures

Figure 1. Spiral blurring simulation. We used EPI resting-state fMRI data and corresponding �eld maps to simulate spiral blurring by sampling the images with a spiral
trajectory of three shots and readout duration of 9.6 ms. Data augmentation included �eld map range alteration using combinations of 𝛼=(1, 1.25, 1.5, 1.75, 2) and β=
(-100, -50, 0, 50, 100) Hz.

Figure 2. Validation results. Field map augmentation modi�ed the frequency range of each slice depending on the parameters 𝛼 and β. a) shows the di�erent
combinations for an example slice and the achieved frequency ranges. b) Image panel displaying the blurred image, gold standard, U-net correction with �eld map, U-net
correction without �eld map, and MFI correction images.

Figure 3. Quantitative validation results. pSNR, SSIM, and HFEN results corresponding to the blurred, U-net with �eld map corrected, U-net without �eld map corrected,
and MFI corrected images in Figure 2 for �ve di�erent o�-resonance frequency ranges.
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Figure 4. Filter visualization. Visualization of representative �lters from the 2nd, 5th, 22nd, and 25th convolutional layers for four di�erent brain slices from the testing
dataset for model explainability.

Figure 5. Evaluation experiment result. Slice and magni�ed region (red square) from a spiral fMRI PRESTO acquisition (left), deep-learning deblurring model correction of
the image (middle), and output-input di�erence image (right).
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