
5/20/2021 https://index.mirasmart.com/ISMRM2021/PDFfiles/3760.html

https://index.mirasmart.com/ISMRM2021/PDFfiles/3760.html 1/3

3760
PyPulseq in a web browser: a zero footprint tool for collaborative and vendor-neutral pulse sequence
development

Keerthi Sravan Ravi , John Thomas Vaughan Jr. , and Sairam Geethanath
Biomedical Engineering, Columbia University, New York, NY, United States, Columbia Magnetic Resonance Research Center, New York, NY, United States

Synopsis
PyPulseq is a free, open-source and vendor-neutral pulse sequence development (PSD) tool, allowing users to develop MR sequences using the Python programming
language. This work demonstrates running PyPulseq in a web browser. This is accomplished by leveraging Google Colab which enables executing arbitrary code in a web
browser. A single-slice 2D Gradient Recalled Echo pulse sequence is programmed and executed on a 3T scanner and the acquired data is visualized. PyPulseq on Colab
enables portable PSD. It is bene�cial for educational purposes, collaborative PSD and for fostering reproducible acquisition methods.

Introduction
Conventionally, designing MR pulse sequences has required knowledge of vendor-speci�c pulse sequence development (PSD) environments. Pulseq [1] has enabled open-
source vendor-neutral PSD. Pulse sequences designed using Pulseq can be executed on Siemens, GE or Bruker hardware with the aid of vendor-speci�c interpreters.
However, the MATLAB-associated licensing cost required to leverage Pulseq is prohibitive. PyPulseq [2, 3] enables free, open-source and vendor-neutral PSD on the
Python programming language (Figure 1, shown in blue). Users can install PyPulseq via a single command and begin designing pulse sequences. Google (Alphabet Inc.,
Mountain View, CA, USA) recently launched Colab - an collaborative Python programming tool that runs in a supported web browser (http://colab.research.google.com).
Users can program arbitrary code in code cells, and execute a collection of these cells as a Colab notebook. This work introduces PyPulseq on Colab, enabling
collaborative and zero footprint development, rapid debugging and deployment of pulse sequences (Figure 1, shown in orange). It also fosters reproducible acquisition
methods [4, 5]. A 2D Gradient Recalled Echo (GRE) pulse sequence is programmed, exported and executed on a Siemens Prisma Fit 3T scanner. The acquired data is
reconstructed o�ine and presented for visualization purposes.

Methods
A 2D GRE pulse sequence was programmed across nine code cells. Text cells were inserted to present relevant information and to demarcate sections such as de�ning
constants, de�ning events, constructing the pulse sequence, plotting and lastly exporting. First, a new Colab notebook was created. The prerequisite PyPulseq library was
installed and imported in cells 1 and 2 (Figure 3). In cell 3, user-de�ned constants such as the number of frequency and phase encodes, slice thickness, �eld of view, etc.
were de�ned. A variable de�ning the hardware limits and a corresponding sequence object was created in cell 4. These include maximum gradient strength, maximum
slew rate and radiofrequency ringdown time among others (Figure 3a). Time constants such as echo time and repetition time were declared in cell 5. PyPulseq supports
arbitrary-, Gauss-, sinc- and rectangular-shaped radiofrequency (RF) pulses. For spatially varying magnetic �eld gradients, it supports arbitrary- and trapezoid-shaped
envelopes. These built-in functions were leveraged to program the individual components of the pulse sequence such as the RF pulse, the slice-select gradient, phase-
encoding gradient, delays etc. across cells 6-10 (Figure 3b). Finally, all these components were assembled to construct a sequence object in cell 11 (Figure 3c). The
sequence object represented a single-slice 2D GRE sequence. The pulse timing diagram was plotted for visual inspection in cell 12 (Figure 3c). For clarity, only the �rst 20
milliseconds of the pulse timing diagram, as indicated by the ‘time_range’ parameter in the ‘PLOTTING TIMING DIAGRAM’ block were visualized, as shown in Figure 3.
Finally, the sequence object was exported as a .seq �le using PyPulseq’s built-in method in cell 14. The pulse sequence was executed on a Siemens Prisma Fit 3T to image
the ISMRM phantom. The acquired data was reconstructed o�ine for visualization purposes.

Results
Google Colab enables combining plain-text and arbitrary code via the use of text cells and code cells respectively. Additionally, a text cell supports embedded images and
GIF animations. This allows users to present relevant information useful for tutorials, for example. Examples of this can be observed across all parts of Figure 3: each
component of the pulse sequence is delimited by a text block that presents a one-line description of the purpose of the associated code block(s). Figure 5 presents the
reconstruction of the acquired data. Google Colab notebooks can be shared publicly on the internet. Recipients can edit or make copies of the notebooks. All of these
features combined facilitate the creation of rich-tutorials that are suitable for educational purposes, and foster collaborative development, debugging and deployment of
pulse sequences.

Discussion and conclusion
As illustrated in Figure 1, PyPulseq already enabled vendor-neutral PSD with zero associated licensing costs. The �exibility to install and run PyPulseq on Google Colab is
an additional bene�t. For the �rst time to the best of our knowledge, users can leverage a collaborative PSD solution. This enables multi-site PSD, multi-site trials of
identical implementations, rapid prototyping and collaborative debugging of pulse sequences, and allows reproducibility of acquisition methods. Future work involves
incorporating image reconstruction tools inline, which will be bolstered by Colab’s GPU/TPU hardware accelerators. Google Colab’s ability to allow users to upload �les or
access �les stored on Google Drive cloud storage, built-in support for GPU acceleration will simplify the image reconstruction work�ow. In conclusion, this work
demonstrates leveraging PyPulseq and Google Colab to deliver an open-source, free to use, web based, portable pulse sequence development tool.

Acknowledgements
This study was funded [in part] by the Seed Grant Program for MR Studies and the Technical Development Grant Program for MR Studies of the Zuckerman Mind Brain
Behavior Institute at Columbia University and Columbia MR Research Center site.

References
1. Layton, Kelvin J., et al. "Pulseq: a rapid and hardware‐independent pulse sequence prototyping framework." Magnetic resonance in medicine 77.4 (2017): 1544-

1552.
2. Ravi, Keerthi Sravan, et al. "Pulseq-Graphical Programming Interface: Open source visual environment for prototyping pulse sequences and integrated magnetic

resonance imaging algorithm development." Magnetic resonance imaging 52 (2018): 9-15.
3. Ravi, Keerthi Sravan, Sairam Geethanath, and John Thomas Vaughan. "PyPulseq: A Python Package for MRI Pulse Sequence Design." Journal of Open Source

Software 4.42 (2019): 1725.
4. Stodden, Victoria. "Reproducible research for scienti�c computing: Tools and strategies for changing the culture." Computing in Science & Engineering 14.4

(2012): 13-17.
5. Goodman, Steven N., Daniele Fanelli, and John PA Ioannidis. "What does research reproducibility mean?." Science translational medicine 8.341 (2016): 341ps12-

341ps12.

1,2 2 2

1 2

Figures

5/20/2021 https://index.mirasmart.com/ISMRM2021/PDFfiles/3760.html

https://index.mirasmart.com/ISMRM2021/PDFfiles/3760.html 2/3

Figure 1. PyPulseq on Google Colab enables zero footprint and collaborative Pulse Sequence Development (PSD). PyPulseq enables free, open-source and vendor-neutral
PSD (shown in blue). The ability to run PyPulseq on a browser via Google Colab enables multi-site PSD, multi-site trial of identical implementations, rapid prototyping and
debugging of pulse sequences, and fosters reproducible acquisition methods (shown in orange).

Figure 2. Screenshot of installing the prerequisite PyPulseq library and importing the required packages. The ‘about’ section of the Colab notebook links to a reputable
resource where users can learn more about the sequence. In the ‘install’ section, PyPulseq is installed from Github via a single command. The ‘import’ section details the
speci�c components that are leveraged in constructing the 2D Gradient Recalled Echo sequence.

Figure 3. Programming a sequence in PyPulseq. (a) The hardware limits of the system intended to be executed on are set (for example maximum gradient strength,
maximum slew rate, etc.). (b) The individual pulse sequence components such the radiofrequency pulse, analog-to-digital readout, etc. are de�ned. (c) These components
are subsequently assembled to form a ‘sequence’ object representing the pulse sequence. (d) The pulse timing diagram is visualized and the sequence is exported as a
.seq �le.

Figure 4. Pulse timing diagram of the 2D Gradient Recalled Echo sequence. For clarity, only the �rst 20 milliseconds of the pulse timing diagram was visualized.

https://index.mirasmart.com/ISMRM2021/PDFfiles/images/2704/ISMRM2021-002704_Fig1.png
https://index.mirasmart.com/ISMRM2021/PDFfiles/images/2704/ISMRM2021-002704_Fig2.png
https://index.mirasmart.com/ISMRM2021/PDFfiles/images/2704/ISMRM2021-002704_Fig3.png
https://index.mirasmart.com/ISMRM2021/PDFfiles/images/2704/ISMRM2021-002704_Fig4.png

5/20/2021 https://index.mirasmart.com/ISMRM2021/PDFfiles/3760.html

https://index.mirasmart.com/ISMRM2021/PDFfiles/3760.html 3/3

Figure 5. Reconstruction of data acquired imaging an ISMRM phantom. A single-slice 2D Gradient Recalled Echo sequence was designed using PyPulseq on Colab. The
sequence was then exported as a .seq �le and executed on a Siemens Prisma Fit 3T scanner. The acquired data was reconstructed using a 2D Fourier transform.

Proc. Intl. Soc. Mag. Reson. Med. 29 (2021)
3760

https://index.mirasmart.com/ISMRM2021/PDFfiles/images/2704/ISMRM2021-002704_Fig5.png

