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Synopsis
While the application of deep learning in MR image analysis has gained signi�cant popularity, using raw MR k-space data as part of deep learning analysis is an
underexplored area. Here we develop a completely complex U-Net deep learning architecture, CU-Net, where we apply deep learning components and operations in the
complex space. CU-Net leverages k-space MR signals while training a U-Net with Attention and Residual components, as opposed to using processed spatial (real) data,
typically seen with MRI deep learning applications. As part of a proof-of-concept study, the complex networks demonstrated their utility and potential superiority over
their spatial counterparts.

Introduction
Despite the rapid expansion of deep learning applications in biomedicine, most deep learning architectures are designed for the real space. Studies have shown that
complex numbers bring various advantages, including better generalization and less noisy retrieval from associative memory.  As MR signals are intrinsically of complex
representation, this demands the incorporation of the complex space into neural network structures. While previous studies have extended deep learning networks to
the frequency domain through spectral pooling, complex batch normalization, and convolution, some attempts are not fully complex in terms of the convolution kernels,
and others are limited to using convolutional neural networks exclusively instead of adapting to other networks.  In our study, we implement a fully-complex U-Net
model with Residual and Attention components (Residual Attention U-Net). It was hypothesized that a network receiving complex k-space MRI data will have more
information in a given instance in comparison to one receiving processed magnitude-only input. Thus, U-Net encoding in the complex domain may lead to improved
feature extraction and data encoding necessary for image translation. To our knowledge, these encoder-decoder networks demonstrate novel complex applications of
otherwise commonly used components including Pooling, Upsampling, and Attention. As an initial demonstration of utility, we use the complex neural networks for a
mouse-brain extraction task and compare it to its spatial (real space) counterpart.

Methods
Data Generation 
A dataset of 120 T2-weighted mouse MRI scans acquired on a Bruker 9.4T scanner was used. The k-space data were extracted from raw data using the Bruker-supplied
MATLAB package PVtools.  Spatial scans were computed using the magnitude of the inverse Fourier transformed k-space data. Ground truth brain masks were generated
from spatial scans with an in-house deep learning-based brain extraction tool that employs a 3D Residual Attention U-Net. Spatial and k-space scans were then randomly
split into train-test-validation sets, consisting of 89, 15, and 16 scans respectively. 
Model Architecture Design  
The model architecture was developed as individual modules including complex Convolution, Batch Normalization, Pooling, Upsampling, Recti�ed Linear Unit (ReLU), and
Sigmoid. These modules were used to build complex Attention and Residual blocks. For the complex data, real and imaginary components are stored as real numbers in
separate channels, for which complex operations are simulated. The underlying theory for complex Convolution, Batch Normalization, and ReLU has been demonstrated
and implemented using other frameworks in previous work.  Similar to complex ReLU, Sigmoid is simulated by applying the operation to real and imaginary components
individually. Our complex Attention has been adjusted by using the same components used in its spatial counterpart, while accommodating for a 2-channel complex
input. Unlike conventional stride-based compression methods (i.e. Maxpool), our implementation of complex Pooling takes advantage of the local properties of data
constrained to the frequency space. Spatial image homogenized edges and gray-level variation features are separated as high and low frequency spaces, respectively.
The resulting spatial separation allows us to implement Pooling which functions similarly to a low-pass �lter; low-frequency data is conserved while high-frequency data is
truncated. Frequency space Upsampling can be conducted as the inverse of complex Pooling: zero-padding high-frequency space originally truncated in feature encoding.
A fully-complex Residual Attention U-Net architecture was constructed with the blocks mentioned above. 
Training and Testing 
2D complex Residual Attention U-Nets were trained at various network depths and �rst layer kernel outputs (see Figure 2 for a sample architecture). To compare
performance to its spatial counterparts, 2D residual attention U-Nets in the real space were also trained at the same network depths and kernel outputs. All other initial
model and training parameters were kept constant.

Results
All complex and real space models were evaluated using DICE coe�cients on their respective test sets. Figure 3 summarizes these results, demonstrating the utility of
complex networks, especially with shallower architecture, which superseded the performance of its real counterparts, across all numbers of �rst layer kernel outputs. The
performance is especially signi�cant for a 3 layer network, which showed the greatest performance increase. In contrast, the performance of complex networks was
poorer for deeper architectures, where real networks showed higher DICE scores for 5 and 6 layer networks. Complex networks, however, demonstrated improved
performance stability compared to the real networks.

Conclusions and Discussion
The results highlight the potential of completely complex neural networks for k-space data when using a U-Net structure. While we have used a U-Net architecture, other
structures, such as the RNN, can also be applied using the complex modules. Moreover, the success of applying our complex Pooling, Upsampling, and Attention, is also
demonstrated. By comparing the complex and real networks across various network depth and kernel settings, the utility and stability of the complex networks are
demonstrated, especially given a model’s memory restrictions. The complex networks have the potential to supersede their spatial counterparts, when restricted to
shallow networks due to memory limitations. For deeper networks, complex networks may demonstrate poorer, however, comparable performance. As brain-extraction
tasks are simple, our work should be regarded as a proof of concept study; future studies will focus on more di�cult tasks such as MRI reconstruction, to understand the
full potential of these networks with k-space data.
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Figures

Figure 1. Complex domain pipeline for mouse-brain extraction. Raw data is used to generate real and imaginary components for k-space data, which was used to train the
complex Residual Attention U-Net network. Model output was compared to ground truth mouse-brain masks.

Figure 2. Sample complex network Residual Attention U-Net architecture. This network shows the architecture of one of the complex networks trained for the mouse-
brain extraction task. The network consists of 4 encoding layers and 4 decoding layers. Spatial dimension decreases by 2 and channel dimension increases by 2 as the
data propagates through the encoding layers while the reverse happens along the decoding layers. A similar structure is used for networks with 3, 5, and 6 layers.

Figure 3. DICE comparisons between the complex and real space networks. a. DICE coe�cients across networks with a constant number of layers (4) and a changing
number of �rst layer kernel outputs (4, 8, and 16) as well as for a constant number of �rst layer kernel outputs (8) and a changing number of layers (3, 5, and 6). b. Mean
scores and standard error between complex and real space.

Figure 4. Network complex operations and modules. These were used within the complex Residual Attention U-Net architecture and listed with them are their
corresponding references.
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