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Synopsis
Gadolinium-based contrast agents (GBCAs) have facilitated an improved analysis and understanding of structural lesions, however, present safety risks due to the tissue
retention of GBCAs. Here we optimize and apply the deep learning model, DeepContrast, to predict gadolinium uptake in brain and breast structural lesions for structural
lesion enhancement. The optimized DeepContrast models predict gadolinium uptake that is comparable to ground-truth scans consisting of the uptake from the GBCAs,
using a single T1-weighted pre-contrast scan.

Introduction
For the detection and subsequent enhancement of structural lesions, gadolinium-based contrast agents (GBCAs) can be administered with MRI.  For brain lesions such as
brain tumors, where there is frequently a breakdown of the blood-brain barrier,  these contrast agents can assist in improving lesion characterization.  Similar bene�ts
have been seen with breast tumors, as GBCAs allow for the improved characterization and vascular visualization of these lesions. While the diagnostic bene�ts of GBCAs
are signi�cant, the safety and long-term health risks of GBCAs are becoming a growing concern.  Speci�c concerns are around the retention of GBCAs, especially within
the brain, which may lead to retention-created toxicity. Preserving the structural lesion diagnostic utility of GBCAs while removing the safety concern that they present is
a task that can be accomplished through deep learning. Studies have shown that gadolinium can be reduced while preserving contrast information,  while others have
used multiparametric MRI for contrast prediction.  In this study, we use our previously developed deep learning model DeepContrast, to predict the enhancement of
brain and breast structural lesions using a single T1-weighted (T1W) pre-contrast scan.

Methods
Brain Tumor Data Preprocessing 
The Brain Tumor Segmentation (BraTS) dataset was used for brain lesions.  Data for 128 subjects were used, based on successful tissue segmentation and data cleaning.
Each subject included a T1W, T1W-CE, and tumor region segmentations. Scans for all subjects were registered to a template space using rigid registration and N4 bias
correction was applied using ANTS.  T1W scan normalization was completed using the largest intensity of the non-tumor region. T1W-CE scans were normalized through
scaling correction, using a scaling ratio calculated with average intensities of the white matter regions within the TW1 and TW1-CE scans. This scaling correction was done
to ensure the T1 pairs are in the same scaling system, a property needed to determine gadolinium uptake. This can be accomplished using a region of the brain which
shows minimal change after contrast enhancement, a behavior demonstrated by white matter.  The pairs were randomly distributed into train-test-validation splits,
consisting of 101, 15, and 12 pairs of scans respectively. 
Brain Tumor Model Training
As the scans were originally acquired through 3D acquisition with isotropic voxel spacing, a 3D Residual Attention U-Net model was used during training (Figure 1). The
package TorchIO  was used to introduce image augmentation during training, to assist with model generalization. The model was trained using the 3D brain volumes and
the ground truth gadolinium uptake was de�ned as the di�erence between the T1W contrast-enhanced (T1W-CE) and pre-contrast scans. 
Breast Tumor Data Preprocessing 
The Breast-MRI-NACT-Pilot dataset  was used for breast lesions which included data from 68 subjects. The imaging protocol included a 3D localizer and a unilateral
sagittal DCE acquisition.  For each DCE acquisition, a pair of scans were used including the non-contrast T1W scan and the scan acquired at the initial time point of the
DCE protocol, which was used as the T1W-CE scan. This resulted in 161 pairs of scans, which were randomly distributed into train-test-validation splits consisting of 129,
16, and 16 pairs respectively. Tumor masks were processed to ensure proper spatial matching with the non-contrast and contrast-enhanced scans. K-means clustering
was used to generate whole breast masks.  
Breast Tumor Model Training 
A 2D Residual Attention U-Net model was used during training (Figure 2). The model was trained using 2D sagittal breast scan slices where the ground truth gadolinium
uptake was de�ned as the di�erence between the T1W-CE scan and the T1W scan

Results
For both the brain and breast lesions, the optimized models were evaluated on their respective hold-out sets by evaluating metrics on the tumor regions speci�ed by the
tumor masks, as well as through voxel-wise analysis across the whole organ region. Figure 3 shows sample test scans, demonstrating the qualitative comparability and
concordance between the ground truth GBCA uptake of the structural lesions and the contrast level estimated by model predictions. Visually, breast lesion predictions
show superior enhancements compared to brain lesions around smaller vessels. Figure 4 summarizes the PSNR, Pearson R Correlation, Spearman R Correlation, and
SSIM, calculated between model predictions and ground truth data. Figure 5 summarizes the AUC, Sensitivity, and Speci�city and shows the receiver operator
characteristic (ROC) curves, generated by evaluating 1000 di�erent binarizing thresholds. These metrics highlight the predictive potential of DeepContrast for both brain
and breast structural lesion enhancement, from a single T1W pre-contrast scan.

Conclusions and Discussion
Results demonstrated that DeepContrast can predict structural lesion contrast enhancements which are qualitatively and quantitatively comparable to the ground truth
GBCA uptake. This is signi�cant given the high variability of structural lesions, such as glioblastomas, which demonstrate signi�cant variation in shape and form. The
signi�cance of these results is further demonstrated given that the predicted contrast is from a single T1W pre-contrast scan. While our results show the potential of
replacing GBCAs or signi�cantly reducing their dosage when imaging structural lesions, they can be further improved given more data that better encompasses the high
variability of structural lesions to improve prediction of �ner details, speci�cally within the brain.
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Figures

Figure 1. 3D Residual Attention U-Net architecture for brain lesion data. The network consists of 6 encoding layers (purple) and 6 decoding layers (orange). Spatial
dimension decreases by 2 and channel dimension increases by 2 as the data propagates through the encoding layers while the reverse happens along the decoding
layers. A full scan is then returned as the model output, as the prediction of the entire scan.

Figure 2. 2D Residual Attention U-Net architecture for breast lesion data. The network consists of 5 encoding layers (purple) and 5 decoding layers (orange). Spatial
dimension decreases by 2 and channel dimension increases by 2 as the data propagates through the encoding layers while the reverse happens along the decoding
layers. A single slice of the predicted scan is then returned as the model output.

Figure 3. Sample model predictions. a. Deep contrast gadolinium-uptake prediction for a sample test brain scan and comparisons to its corresponding ground truth. b.
Deep contrast gadolinium-uptake prediction for a sample breast scan and comparison to its corresponding ground truth.
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Figure 4. Test metrics. Summary of metrics computed between ground truth data and the optimized model gadolinium predictions, on the tumor, non-tumor, and whole
organ regions. Metrics were also computed between the T1W pre-contrast scan and the ground truth data, as a form of baseline assessment.

Figure 5. Similarity visualization. a, c. A visual summary of average test metrics for the tumor, non-tumor, and whole organ regions. b, d. ROC curves computed between
ground truth and model predictions, as well as between T1W pre-contrast scans and ground truth data.
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