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Synopsis
Alzheimer’s disease (AD) is a neurodegenerative disorder where functional de�cits precede structural deformations. Various studies have demonstrated the e�cacy of
deep learning in diagnosing AD using imaging data, and that functional modalities are more helpful than structural counterparts over comparable sample size. To deal
with the lack of large-scale functional data in the real world, we used a structure-to-function translation network to arti�cially generate a previously non-existent spatially-
matched functional neuroimaging dataset from existing large-scale structural data. The arti�cial functional data, generated with little cost, complemented the authentic
structural data to further improve the performance of AD classi�cation.

Introduction
Current neuroimaging techniques provide paths to investigate the structure and function of the brain in vivo and have made great advances in understanding Alzheimer’s
disease (AD). Besides the traditional large-scale statistical analyses to discover group-level di�erences, recent advancements in deep learning push the limits to individual-
level disease diagnosis. Great progress has been made for classifying AD with deep learning models developed upon increasingly available structural MRI data . The lack
of scale-matched functional neuroimaging data prevents such models from being further improved by observing functional changes in pathophysiology. Here we propose
a potential solution by synthesizing spatially matched functional images from large-scale structural scans. We evaluate our approach by building convolutional neural
networks to discriminate patients with AD from healthy normal subjects based on both structural and functional neuroimaging data.

Methods
We utilized a pre-trained network called DeepContrast  that performs quantitative structural- to-functional mapping, extracting the hemodynamic information from
structural MRI. We applied DeepContrast on a 2580-scan T1W MRI cohort and yielded 2580 arti�cial CBV (ACBV) scans, each corresponding to one T1W MRI scan. Then, we
trained multiple networks based on VGG19 to perform the AD vs. CN binary classi�cation task. We altered the network input with di�erent options, including T1W MRI,
ACBV, or the combination of the two. We screened T1W MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)  dataset, selected for 3 Tesla MP-RAGE
acquisitions, and performed propensity score matching (PSM)  to match the age distributions. The T1W MRI scans were a�ne-registered to an unbiased template to
reduce variance in features such as the brain volume while still preserving di�erences in local anatomy which may presumably re�ect AD-related e�ects on brain
structures. The arti�cial CBV scans were di�eomorphically-registered to minimize e�ects from structural di�erences. The prepared scans were randomly assigned to train,
validation, and test sets at an 8:1:1 ratio.  

For the AD classi�cation tasks with one single input modality, the architecture “VGG-19 with batch normalization” (VGG-19BN)  was used. When both T1W and ACBV were
used as inputs, three options were experimented with for information fusion. One is appending the two 3D volumes in an additional fourth axis, treating them as
separate channels. In the last two options, we used separate VGG encoders for each volume and later appended the extracted feature vectors together before entering
the fully-connected layers. The two encoders may either share identical weights or keep di�erent weights. For all architectures, the input is the relevant 3D scan(s) while
the output is a continuous-valued number representing the predicted AD-likelihood.  

To evaluate the descriptiveness of the predicted AD-likelihoods, we conducted receiver-operating characteristics (ROC) studies to analyze the concordance between the
model-generated classi�cation and ground truth AD/CN labels. Further, we investigated the brain regions that had the most contributions to the AD classi�cation task by
visualizing the class activation maps (CAM) .

Results
After training the networks, we tested the �ve aforementioned candidates on the same stand-alone dataset. Classi�cation performance using the arti�cial functional data
(ACBV) alone is equal or better in every aspect than that using the structural data (T1W) alone. Utilization of both modalities using channel combination yielded better ROC
but worse accuracy compared to using any one single modality. The dual-encoder approach for modality fusion, with the encoders sharing identical weights yielded the
worst performance among all candidates, whereas the same approach with the weights not shared between the encoders resulted in the best performances across all
metrics. When inspecting the ROC curves, the same trend is preserved. The class activation map of the best-performing classi�er demonstrates that the most highly
contributing structural information comes from the temporal lobe, while the most highly informative arti�cial functional information comes from the parieto-occipital
lobe.

Discussion & Conclusion
By using the DeepContrast model, we demonstrated that a large- scale functional dataset can be arti�cially generated and subsequently used to assist AD classi�cation.
The best performing model structure was the dual-modality model making use of both structural T1W scans and arti�cial functional scans using two separate encoders.
Training each encoder to focus on one of the two modalities independently allowed the most e�cient grasp of the data distribution and eventually yielded the best
classi�cation performances. While we have demonstrated the e�ectiveness of combining structural and arti�cial functional data for AD classi�cation, what is more
signi�cant is DeepContrast’s ability to essentially �ll the void for functional data, which is usually sparse and less abundant in nature. Further, our regional analyses
identi�ed the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe to be the most predictive functional-region for our model, which are
both in concordance with previous group-level neuroimaging �ndings. Together, we demonstrate the potential of deep learning with large- scale structural and arti�cial
functional MRI to impact AD classi�cation and to identify AD’s neuroimaging signatures.
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Figures

Data overview and partitioning. a. The data processing pipeline that yielded the inputs to the classi�cation models. VS: voxel size; MS: matrix size (of the entire scan). b.
Left: Age distributions of the subjects in the entire dataset (top) and in the subset after propensity-score matching of age (bottom). Right: Age distributions of the subjects
assigned to the train, validation and test sets.

Network architectures implemented for AD classi�cation.a.DeepContrast is used to generate the arti�cial CBV maps from T1W scans.b.VGG-19 with Batch Normalization.
Used for cases with one single input modality. c-e. Modi�ed architectures for dual-modality input. c.Option 1: Channel-wise combination of the two modalities.d.Option 2:
Modality-speci�c VGG encoders, with the weights shared across the two encoders.e.Option 3: Modality-speci�c VGG encoders, but di�erent weights across the two
encoders.

Classi�cation performances of the �ve candidates. Sensitivity and speci�city are calculated at the operating point. Accuracy at the operating point and the maximum
accuracy achievable by changing the binarization threshold are respectively calculated for each candidate. ROC AUC: area under the receiver-operating characteristics
curve.

Receiver Operating Characteristics (ROC) and Class Activation Maps (CAM). a. ROC curves for the classi�cation models using structural data only (black), using arti�cial
functional data only (blue), or using both with the “dual-encoder with di�erent weights" approach (red). b. The class-average CAM, calculated from all 131 AD scans, of the
best performing model in response to structural and arti�cial functional data.
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